Skip to Main Content
CWRU Links


Jonathan Karn, PhD

Professor, Molecular Biology and Microbiology 216.368.3915 (o) 216.368.3055 (f)

Member, Cancer Prevention, Control & Population Research Program


View External Profile

View Publications

HIV persists in the face of highly active antiretroviral therapy (HAART) due to constitutive low-level replication in sites that are poorly accessible to drugs and the development of latent infections in a variety of types including the long-lived memory CD4+ T cell population, macrophages, and microglial cells in the brain - cells that play a critical role in neurologic dysfunction and neurotoxicity.  Although HAART has greatly extended survival to patients infected with HIV-1, current therapy has failed to decrease the prevalence of HIV-neurological diseases especially in individuals who abuse drugs. Our research focuses on defining the molecular basis for HIV silencing, the signaling pathways used to reactivate latent HIV, the impact of drugs of abuse on the creation and reactivation of the latent viral reservoir in microglial cells, and the development of novel therapeutic approaches to attacking HIV latency. Key questions about HIV silencing that remain to be answered include: What are the primary sequence triggers and mechanisms that induce silencing (i.e. protein repressors and/or viral-derived RNA)? What cellular pre-conditions lead to proviral silencing?  Do similar silencing mechanisms operate in each of the cell types infected by HIV?  How do drugs of abuse reactivate HIV?  In partial answer to these questions we have demonstrated that distinct epigenetic silencing mechanisms lead to viral persistence in different cell types.  Using novel unbiased shRNA screens we have shown that in T-cells, the polycomb repressive complex 2 (PCR2) plays a central role in maintaining proviral latency, whereas in microglial cells, PCR2 is absent and silencing is mediated by the SMRT and CoREST silencing machinery.  Because of these differences in the silencing machinery we have been able to identify selective activators of HIV transcription in the two different cell types.  Extending this work we plan to develop novel technologies allowing exploitation a natural epigenetic silencing mechanisms involving both histone and DNA methylation, to block HIV transcription.  Our laboratory has developed an extensive network of collaborations with academic and pharmaceutical partners as part of our work on HIV eradication.  Our laboratory is a participant in the Martin Delaney Collaboratory of AIDS Researchers for Eradication (CARE), a network of twenty leading laboratories working on HIV eradication strategies, the amfAR Research Consortium on HIV Eradication (ARCHE), the HIV Reservoirs and Viral Eradication Transformative Science Group (TSG) of the AIDS Clinical Trials Group (ACTG) and we are also working in close collaboration with Merck on identification of novel HIV therapeutics.